Метод экспоненциального сглаживания скользящей средней в Excel
Скользящая средняя позволяет прекрасно сглаживать данные. Но ее главный недостаток заключатся в том, что каждое значение в исходных данных для нее имеет одинаковый вес. Например, для средней скользящей использующей период шести недель каждому значению для каждой недели уделяется 1/6 веса. В случае некоторых собранных статистических данных более актуальным значениям присваивается больший вес. Поэтому экспоненциальное сглаживание применятся для того, чтобы придать самым актуальным данным большего веса. Таким образом решается данная статистическая проблема.
Формула расчета метода экспоненциального сглаживания в Excel
Ниже на рисунке изображен отчет спроса на определенный продукт за 26 недель. Столбец «Спрос» содержит информацию о количестве проданного товара. В столбце «Прогноз» – формула:
В столбце «Скользящая средняя» определяется прогнозируемый спрос, рассчитанный с помощью обычного вычисления скользящей средней с периодом 6 недель:
В последнем столбце «Прогноз», с описанной выше формулой применяется метод экспоненциального сглаживания данных в которых значения последних недель имеет больший вес чем предыдущих.
Коэффициент «Альфа:» вводится в ячейке G1, он значит вес присвоения наиболее актуальным данным. В данном примере он имеет значение 30%. Остальные 70% веса распределяется на остальные данные. То есть второе значение с точки зрения актуальности (с право на лево) имеет вес равный 30% от оставшихся 70% веса – это 21%, третье значение имеет вес равен 30% от остальной части 70% веса – 14,7% и так далее.
График экспоненциального сглаживания
Ниже на рисунке изображен график спроса, среднее скользящие и прогноз методом экспоненциального сглаживания, который построен на основе исходных значений:
Обратите внимание, что прогноз с экспоненциальным сглаживанием более активно реагирует на изменения спроса чем скользящая средняя линия.
Данные для очередных предыдущих недель умножаются на коэффициент альфа, а результат добавляется к оставшейся части процентов веса умноженный на предыдущее прогнозируемое значение.
Читайте также: Формула сглаживания данных методом скользящей средней в Excel
Чем более старше данные о спросе, тем менее их влияние на прогноз рассчитанный методом экспоненциального сглаживания данных. Другими словами, данные о спросе за последнюю неделю являются более важными, чем данные за предыдущую неделю.